• Almira Fahrinda
  • Sjarif Ismail Pharmacology Laboratory, Faculty of Medicine Mulawarman University, Indonesia
  • Khemasili Kosala Pharmacology Laboratory, Faculty of Medicine Mulawarman University, Indonesia
  • Ika Fikriah Pharmacology Laboratory, Faculty of Medicine Mulawarman University, Indonesia
  • Yuniati Yuniati Microbiology Laboratory, Faculty of Medicine Mulawarman University, Indonesia
Keywords: Kaempferia galanga, synergistic, antibiotic, Escherichia coli, Staphylococcus aureus


Background: aromatic ginger rhizome (Kaempferia galanga L.) is a member of Zingiberaceae family, has been known to have an antibacterial effect is used for everyday cooking spices, but the synergistic effect on broad spectrum antibiotics was unknown. Objective: this research was conducted to find out the synergistic effect of Kaempferia galanga L. Rhizome extract (KGR) on some broad-spectrum antibiotics against gram positive and negative bacterial pathogens in vitro. Method: KGR was taken from farmers in Samarinda City, East Kalimantan Province, Indonesia. Extraction by maceration with ethanol solvent. Antibacterial activity test of KGR ethanol extract, antibiotic and synergistic effect using Mueller-Hinton agar, Kirby-Bauer disc diffusion method on ampicillin, cefuroxime, chloramphenicol, ciprofloxacin, and meropenem antibiotics against Staphylococcus aureus and Escherichia coli. Results were expressed in percentage increase of the inhibition zone. Statistical test with t-test, significantly different if p<0.05. Results: KGR ethanol extract showed increase the percentage of antibiotic inhibition zone, ampicillin being the highest and the weakest of ciprofloxacin in E. coli; meropenem being the highest and the weakest of ciprofloxacin in S. aureus, statistically significant different tests on antibiotic ampicillin (E. coli), meropenem and cefuroxime. Conclusion: KGR ethanol extract showed synergistic effect on antibiotic ampicillin (E. coli), meropenem and cefuroxime in S. aureus and E. coli.


Download data is not yet available.


[1] Centers for Disease Control and Prevention (CDC). 2013. Antibiotic Resistence Threats in the United States, Atlanta.
[2] World Health Organization (WHO). 2016. Antimicrobial Resistance: Global Report on Surveillance, Geneva.
[3] Arason VA, & Sigurdsson AJ. 2010. The Problem of Antibiotic Overuse, Scandinavian Journal of Primary Health Care, 28(2):65-66.
[4] Shallcross LJ, & Davies DS. 2014. Antibiotic Overuse: A Key Driver of Antimicrobial Resistance, The British Journal of General Practice, 64(629):604-605.
[5] Ventola CL. 2015. The Antibiotic Resistance Crisis, Pharmacy and Therapeutics, 40(4):277-283.
[6] Kementrian Kesehatan Republik Indonesia. 2015. Penggunaan Antibiotika Bijak dan Rasional Kurangi Beban Penyakit Infeksi. Available at: www.depkes.go.id. Acessed 04/23/2017
[7] Kementrian Kesehatan Republik Indonesia. 2016. Mari Bersama Atasi Resistensi Antimikroba (AMR). Available at: www.depkes.go.id. Acessed 04/23/2017
[8] Wong KC, Ong KS, & Lim CL. 1992. Composition of The Essential Oil of Rhizome of Kaempferia galanga L, Flavour and Fragrance Journal, 7(5):263-266.
[9] Sunayana V, Vadivukkarasi P, Rajendran A, Xavier TF, & Natarajan E. 2003. Antibacterial Potential of Plectranthus ambonicus (Lour). Spreng: A Study in vitro, Journal of the Swamy Botanical Club, 20:55-58.
[10] Kanjanapothi D, Panthong A, Lertprasertsuke N, Taesotikul T, Rujjanawate C, Kaewpinit D, Sudthayakorn R, Choochote W, Chaithong U, Jitpakdi A, & Pitasawat B. 2004. Toxicity of Crude Rhizome Extract of Kaempferia alanga L. (Proh Hom). Journal of Ethnopharmacology, 9(2-3):359-365.
[11] Mustafa RA, Abdul HA, Muhamed S, & Bakar FA. 2010. Total Phenolic Compounds, Flavonoids, and Radical Scavenging Activity of 21 Selected Tropical Plants, Journal of Food Science, 75(1):C28-C35.
[12] Kochuthressia KP, Britto SJ, Jaseentha MO, & Raphael R. 2012. In Vitro Antimicrobial Evaluation of Kaempferia galanga L. Rhizome Extract. American Journal Biotechnology and Molecular Sciences, 2(1):1-5.
[13] Rawat S. 2015. Evaluation of Synergistic Effect of Ginger, Garlic, Turmeric Extracts on The Antimicrobial Activity of Drugs Against Bacterial Phatogens. International Journal of Biopharmaceutics, 6(2):60-65.
[14] Hawaze S, Deti H, & Suleman S, 2012. In Vitro Antimicrobial Activity and Phytochemical Screening of Clematis Species Indigenous to Ethiopia. Indian Journal of Pharmaceutical Sciences, 74(1):29-35.
[15] Lakshmanan D, Werngren J, Jose L, Suja K, Nair MS, Varma RL, Mundayoor S, Hoffner S, & Kumar RA. 2011. Ethyl p-methoxycinnamate Isolated from a Traditional Anti-Tuberculosis Medicinal Herb Inhibits Drug Resistant Strains of Mycobacterum tuberculosis in vitro. Fitoterapia, 82(5):757-761.
[16] Omar MN, Hasali NH, Alfarra HY, Yarmo MA, & Zuberdi AM. 2014. Antimicrobial Activity and Microbial Transformation of Ethyl p-Methoxycinnamate Extracted from Kaempferia galanga. Oriental Journal of Chemistry, 30(3):1037-1043.
[17] Cushnie TT, & Lamb AJ. 2005. Antimicrobial Activity of Flavonoids. International Journal of Antimicrobial Agents, 26(5):343-356.
[18] Umar MI, Asmawi MZ, Sadikun A, Altaf R, & Iqbal MA. 2011. Phytochemistry and Medicinal Properties of Kaempferia galangal L. (Zingiberaceae) extracts. African Journal of Pharmacy and Pharmacology, 5(14):1638-1647.
[19] Eumkeb G, & Chukrhatok S. 2013. Synergistic Activity and Mechanism of Action of Ceftazidime and Apigenin Combination against Ceftazidime-Resistant Enterobacter cloacae. Phytomedicine, 20(3-4):262-269.
[20] Joung DK, Lee YS, Han SH, Lee SW, Cha SW, Mun SH, Kong R, Kang OH, Song HJ, Shin DW, & Kwon DY. 2015. Potentiating Activity of Luteolin on Membrane Permeabilizing Agents and ATPase Inhibitor againts Methicillin-Resistant Staphylococcus aureus, Asian Pacific Journal of Tropical Medicine, 9(1):19-22.