Pharmacologically Active Secondary Metabolites from Psoralea corylifolia

Authors

  • Ni Putu Ariantari Study Program of Pharmacist Profession, Faculty of Mathematics and Natural Sciences, Udayana University, Jimbaran, Badung, Bali 80361 https://orcid.org/0000-0001-9657-9958
  • Elizabeth S. P. Ratnasantasyacitta Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Udayana University, Jimbaran, Badung, Bali 80361 https://orcid.org/0000-0001-8972-4045

DOI:

https://doi.org/10.25026/jtpc.v6i2.431

Keywords:

bakuchiol, pharmacological activities, Psoralea corylifolia, bioactive metabolites

Abstract

Psoralea corylifolia has gained much attention, particularly in the cosmetic industry for the past few years owing to promising pharmacological activities of its metabolites. Seeds of P. corylifolia are the main source of bakuchiol, a meroterpene compound that is extensively harnessed in numerous skincare products. Furanocoumarins, psoralen and isopsoralen are other metabolites mainly from P. corylifolia seeds and known for their antipsoriatic activity. Moreover, various studies have reported several classes of secondary metabolites from this plant possessing diverse biological activities. This article highlights recent updates on P. corylifolia phytoconstituents and their promising pharmacological activities based on scientific publications during the last 10 years (2011-2021). The literature search was carried out through scientific-based websites and databases such as Google Scholar, NCBI, and PubMed. This paper included sixty-three bioactive metabolites reported in the last 10 years, belonging to the group of flavonoids, meroterpenes, furanocoumarins, coumestans, steroid and phenolic compounds. These phytoconstituents displayed a broad range of bioactivities including anti-inflammatory, antibacterial, antidiabetic, controlling obesity, hepatoprotective and cytotoxicity.

Keywords: Bakuchiol, pharmacological activities, Psoralea corylifolia, bioactive metabolites.

Downloads

Download data is not yet available.

References

M. N. Dludlu, A. M. Muasya, S. B. M. Chimphango, and C. H. Stirton, 2015. Taxonomy of the southern African Psoralea aphylla complex (Psoraleeae, Leguminosae). South African J. Bot. 97. 77–100. doi: 10.1016/j.sajb.2014.11.009.

P. Pandey, R. Mehta, and R. Upadhyay, 2013. Physiochemical and Prelimimnary phytochemical screening of Psoralea corylifolia. Arch. Appl. Sci. Res. 5. 2 261–265.

T. H. Won et al., 2015.Bioactive metabolites from the fruits of Psoralea corylifolia. J. Nat. Prod. 78. 4. 666–673. doi: 10.1021/np500834d.

C. C. Li et al., 2016. Phytochemical and Pharmacological Studies on the Genus Psoralea: A Mini Review. Evidence-based Complement. Altern. Med.. vol. 2016. doi: 10.1155/2016/8108643.

J. Sharifi-Rad et al., 2020. Pharmacological Activities of Psoralidin: A Comprehensive Review of the Molecular Mechanisms of Action, Front. Pharmacol. 11. doi: 10.3389/fphar.2020.571459.

S. Ma et al., 2016. Prenylflavone derivatives from the seeds of Psoralea corylifolia exhibited PPAR-? agonist activity. Phytochem. Lett. 16. 213–218. doi: 10.1016/j.phytol.2016.04.016.

E. Seo, E. K. Lee, C. S. Lee, K. H. Chun, M. Y. Lee, and H. S. Jun, 2014. Psoralea corylifolia L. seed extract ameliorates streptozotocin-induced diabetes in mice by inhibition of oxidative stress. Oxid. Med. Cell. Longev. vol. 2014. doi: 10.1155/2014/897296.

M. Archarya, T. R. Singh, and P. BJ, 2015. Anti microbial activity of different dosage forms of Bakuchi (Psoralea corylifolia Linn.) taila, An Ayurvedic formulation. Int. J. Ayurvedic Med. 6. 3. 232–236. doi: 10.47552/ijam.v6i3.637.

X. Ma and J. Meredith, 2021. Herbal Medicine in Andrology: An Evidence-Based Update, A. Henkel, Ralf; Agarwal, Ed. Academic Press. Cambridge.

Y. Han, H. Lee, H. Li, and J. H. Ryu, 2020. Corylifol a from psoralea corylifolia L. Enhances myogenesis and alleviates muscle atrophy. Int. J. Mol. Sci. 21. 5. 1–12. doi: 10.3390/ijms21051571.

F. M. Husain et al., 2018. Seed Extract of Psoralea corylifolia and Its Constituent Bakuchiol Impairs AHL-Based Quorum Sensing and Biofilm Formation in Food- and Human-Related Pathogens. Front. Cell. Infect. Microbiol. 8. October. 351. doi: 10.3389/fcimb.2018.00351.

S. Shrestha et al., 2018. Pharmacognostical evaluation of Psoralea corylifolia Linn. seed. J. Ayurveda Integr. Med. 9. 3. doi: 10.1016/j.jaim.2017.05.005.

L. Tang, F. Guan, and D. He, 2012. Preliminary research on the interaction between a novel designed self-assembling peptide with half-sequence ionic complement and the natural product psoralen. Adv. Mater. Res. 550–553. 1580–1585. doi: 10.4028/www.scientific.net/AMR.550-553.1580.

L. M. Madigan and H. W. Lim, Psoralen-Ultraviolet Light A Therapy. Elsevier, 2016.

A. Borate, A. Khambhapati, M. Udgire, D. Paul, and S. Mathur, 2014. Preliminary Phytochemical Studies and Evaluation of Antibacterial Activity of Psoralea corylifolia Seed Extract. Am. J. Phytomedicine Clin. Ther. 2. 1. 095–101.

Q. Xu et al., 2008. Antidepressant-like effects of psoralen isolated from the seeds of Psoralea corylifolia in the mouse forced swimming test. Biol. Pharm. Bull. 31. 6. 1109–1114. doi: 10.1248/bpb.31.1109.

X. Yuan, Y. Bi, Z. Yan, W. Pu, Y. Li, and K. Zhou, 2016. Psoralen and Isopsoralen Ameliorate Sex Hormone Deficiency-Induced Osteoporosis in Female and Male Mic. Biomed Res. Int. vol. 2016. doi: 10.1155/2016/6869452.

X. Li et al., 2018. “New application of psoralen and angelicin on periodontitis with anti-bacterial, anti-inflammatory, and osteogenesis effects,” Front. Cell. Infect. Microbiol. vol. 8. JUN. 1–13. doi: 10.3389/fcimb.2018.00178.

Y. Wang, C. Hong, C. Zhou, D. Xu, and H. Bin Qu, 2011. Screening antitumor compounds psoralen and isopsoralen from psoralea corylifolia L. seeds. Evidence-based Complement. Altern. Med. 2011. doi: 10.1093/ecam/nen087.

K. Jafernik, E. Halina, S. Ercisli, and A. Szopa, 2021. Characteristics of bakuchiol - the compound with high biological activity and the main source of its acquisition - Cullen corylifolium (L.) Medik. Nat. Prod. Res. 35. 24. 5828–5842. doi: 10.1080/14786419.2020.1837813.

C. H. Chen, T. L. Hwang, L. C. Chen, T. H. Chang, C. S. Wei, and J. J. Chen, 2017. Isoflavones and anti-inflammatory constituents from the fruits of Psoralea corylifolia. Phytochemistry. 143.186–193. doi: 10.1016/j.phytochem.2017.08.004.

Z. J. Chen, Y. F. Yang, Y. T. Zhang, and D. H. Yang, 2018. Dietary total prenylflavonoids from the fruits of Psoralea corylifolia L. Prevents age-related cognitive deficits and down-regulates Alzheimer’s markers in SAMP8 mice. Molecules. 23. 1. doi: 10.3390/molecules23010196.

T. Zhang et al., “Quantitative structure-activity relationship for estrogenic flavonoids from Psoralea corylifolia,” J. Pharm. Biomed. Anal., vol. 161, pp. 129–135, 2018, doi: 10.1016/j.jpba.2018.08.040.

A. K. Gebremeskel et al., 2017. Psoralea corylifolia extract induces vasodilation in rat arteries through both endothelium-dependent and -independent mechanisms involving inhibition of TRPC3 channel activity and elaboration of prostaglandin. Pharm. Biol. 55. 1. 2136–2144. doi: 10.1080/13880209.2017.1383484.

Y. J. Kim, H. Lim, J. Lee, and S. Jeong, 2016. Quantitative Analysis of Psoralea corylifolia Linne and its Neuroprotective and Anti-Neuroinflammatory Effects in HT22 Hippocampal Cells and BV-2 Microglia. Molecules. 21. 1–11. doi: 10.3390/molecules21081076.

Y. Li et al., 2019. Isobavachalcone isolated from Psoralea corylifolia inhibits cell proliferation and induces apoptosis via inhibiting the AKT/GSK-3?/?-catenin pathway in colorectal cancer cells. Drug Des. Devel. Ther. 13. 1449–1460. doi: 10.2147/DDDT.S192681.

L. Zhou et al., 2020. Five constituents in Psoralea corylifolia L. Attenuate palmitic acid-induced hepatocyte injury via inhibiting the protein kinase C-?/nicotinamide-adenine dinucleotide phosphate oxidase pathway,” Front. Pharmacol. 10. January. 1–16. doi: 10.3389/fphar.2019.01589.

B. Liu et al., 2020. Evaluation of toxicity and anti-osteoporosis effect in rats treated with the flavonoids of Psoraleae Fructus. J. Funct. Foods. 75. 104262. doi: 10.1016/j.jff.2020.104262.

H. Z. Li et al., 2018. Four new flavonoids with DGAT inhibitory activity from Psoralea corylifolia. Phytochem. Lett. 28. October. 130–134. doi: 10.1016/j.phytol.2018.10.005.

M. Y. Chai, 2019. A new bioactive coumestan from the seeds of Psoralea corylifolia. J. Asian Nat. Prod. Res., 22. 3. 295–301. doi: 10.1080/10286020.2018.1563073.

A. X. D. Yu et al., 2020. Corylin, a flavonoid derived from Psoralea Fructus, induces osteoblastic differentiation via estrogen and Wnt/?-catenin signaling pathways. FASEB J. 34. 3. 4311–4328. doi: 10.1096/fj.201902319RRR.

J. Du et al., 2017. Chemical constituents from the fruits of Psoralea corylifolia and their protective effects on ionising radiation injury. Nat. Prod. Res.. 33. 5. 673–680. doi: 10.1080/14786419.2017.1405407.

Q. X. Xu, Y. B. Zhang, X. Y. Liu, W. Xu, and X. W. Yang, 2020. Cytotoxic heterodimers of meroterpene phenol from the fruits of Psoralea corylifolia. Phytochemistry. 176. 38. 112394. doi: 10.1016/j.phytochem.2020.112394.

A. Alalaiwe et al., 2018. The active compounds derived from Psoralea corylifolia for photochemotherapy against psoriasis-like lesions: The relationship between structure and percutaneous absorption. Eur. J. Pharm. Sci.. 124. 114–126. doi: 10.1016/j.ejps.2018.08.031.

E. Seo, H. Kang, Y. S. Oh, and H. S. Jun, 2017. Psoralea corylifolia L. Seed extract attenuates diabetic nephropathy by inhibiting renal fibrosis and apoptosis in streptozotocin-induced diabetic mice. Nutrients. 9. 8. 1–12. doi: 10.3390/nu9080828.

S. J. Kim, H. C. Oh, Y. C. Kim, G. S. Jeong, and S. Lee, 2016. Selective Inhibition of Bakuchicin Isolated from Psoralea corylifolia on CYP1A in Human Liver Microsomes. Evidence-based Complement. Altern. Med. 2016. 1–8. doi: 10.1155/2016/5198743.

X. Li et al., 2011. Bakuchicin induces vascular relaxation via endothelium-dependent NO-cGMP signaling. Phyther. Res.. 25. 10. 1574–1578. doi: 10.1002/ptr.3478.

G. Zhu, Y. Luo, X. Xu, H. Zhang, and M. Zhu, 2019. Anti-diabetic compounds from the seeds of Psoralea corylifolia. Fitoterapia. 139. 104373. doi: 10.1016/j.fitote.2019.104373.

I. Hussain, N. Hussain, A. Manan, A. Rashid, B. Khan, and S. Bakhsh, 2016. Fabrication of anti-vitiligo ointment containing Psoralea corylifolia: In vitro and in vivo characterization. Drug Des. Devel. Ther. 10. 3805–3816. doi: 10.2147/DDDT.S114328.

J. E. Kim et al., 2016. Bakuchiol suppresses proliferation of skin cancer cells by directly targeting Hck, Blk, and p38 MAP kinase. Oncotarget. 7. 12. 14616–14627. doi: 10.18632/oncotarget.7524.

J. Wang et al., 2020. Bakuchiol from Psoralea corylifolia L. Ameliorates acute kidney injury and improves survival in experimental polymicrobial sepsis. Int. Immunopharmacol. 89. April. 107000. doi: 10.1016/j.intimp.2020.107000.

D. Wang et al., 2020. Two new meroterpenes with activity against diacylglycerol acyltransferase from seeds of Psoralea corylifolia. Phytochem. Lett.. 40. November. 171–175. doi: 10.1016/j.phytol.2020.10.006.

L. Ren et al., 2020.“New compounds from the seeds of Psoralea corylifolia with their protein tyrosine phosphatase 1B inhibitory activity,” J. Asian Nat. Prod. Res.. 22. 8. 732–737. doi: 10.1080/10286020.2019.1621852.

X. Zhang, W. Zhao, Y. Wang, J. Lu, and X. Chen, 2016. The Chemical Constituents and Bioactivities of Psoralea corylifolia Linn.: A Review. Am. J. Chin. Med.. 44. 1. 35–60. doi: 10.1142/S0192415X16500038.

I. Hussain and N. Mubarak, 2019. Skin Pigmentation Effects of Psoralea Corylifolia: A Case Study of Vitiligo. J. Islam. Int. Med. Coll. 14. 1. 48–50.

R. A. Spritz and G. H. L. Andersen, 2017. Genetics of Vitiligo,” Dermatol. Clin. 35. 2. 245–255. doi: 10.1016/j.det.2016.11.013.

S. Dhaliwal et al., 2019. Prospective, randomized, double-blind assessment of topical bakuchiol and retinol for facial photoageing. Br. J. Dermatol.. 180. 2. 289–296. doi: 10.1111/bjd.16918.

R. K. Chaudhuri and K. Bojanowski, 2014. Bakuchiol?: a retinol-like functional compound revealed by gene expression profiling and clinically proven to have anti-aging effects. 221–230. doi: 10.1111/ics.12117.

M. Shoji et al., 2015. Bakuchiol Is a Phenolic Isoprenoid with Novel Enantiomer- selective Anti-influenza A Virus Activity Involving Nrf2. The Journal of Biological Chemistry. 290. 46. 28001–28017. doi: 10.1074/jbc.M115.669465.

J. S. Lim et al., 2020. Bakuchicin attenuates atopic skin inflammation. Biomed. Pharmacother.129. July. 0–7. doi: 10.1016/j.biopha.2020.110466.

A. Dattola, L. Bennardo, M. Silvestri, and S. P. Nisticò, 2019. What’s new in the treatment of atopic dermatitis?. Dermatol. Ther.. 32. 2. 2–5. doi: 10.1111/dth.12787.

M. Chong and L. Fonacier, 2015. Treatment of Eczema?: Corticosteroids and Beyond. Clin. Rev Allerg Immunol. 51. 3. 249–262. doi: 10.1007/s12016-015-8486-7.

H. N. Li, C. Y. Wang, C. L. Wang, C. H. Chou, Y. L. Leu, and B. Y. Chen, 2019. Antimicrobial Effects and Mechanisms of Ethanol Extracts of Psoralea corylifolia Seeds Against Listeria monocytogenes and Methicillin-Resistant Staphylococcus aureus. Foodborne Pathog. Dis.. 16. 8. 573–580. doi: 10.1089/fpd.2018.2595.

S. T. Rutherford et al., 2012. Bacterial Quorum Sensing?: Its Role in Virulence and Possibilities for Its Control. Cold Spring Harb Perspect Med. 2. 11. 1–25. doi: 10.1101/cshperspect.a012427.

B. Rémy, S. Mion, L. Plener, M. Elias, E. Chabrière, and D. Daudé, 2018. Interference in Bacterial Quorum Sensing?: A Biopharmaceutical Perspective. Front. Pharmacol.. 9. March. doi: 10.3389/fphar.2018.00203.

T. Kielian, 2015. Neuroinflammation: good, bad, or indifferent?. J Neurochem. 130. 1. 1–3. doi: 10.1111/jnc.12755.Neuroinflammation.

J. E. Yuste, E. Tarragon, C. M. Campuzano, and F. Ros-bernal, 2015. Implications of glial nitric oxide in neurodegenerative diseases. Front. Cell. Neurosci.. 9. 1–13. doi: 10.3389/fncel.2015.00322.

Z. Zhao et al., 2013. Edaravone Protects HT22 Neurons from H 2 O 2 -Induced Apoptosis by Inhibiting the MAPK Signaling Pathway. CNS Neurosci. Ther.. 19. 163–169. doi: 10.1111/cns.12044.

L. Zhou et al., 2017. Psoralea corylifolia L. Attenuates nonalcoholic steatohepatitis in juvenile mouse. Front. Pharmacol.. 8. NOV. 1–13 doi: 10.3389/fphar.2017.00876.

Y. M. Hong, S. I. Choi, E. Hong, and G. H. Kim, 2020. Psoralea corylifolia L. extract ameliorates nonalcoholic fatty liver disease in free-fatty-acid-incubated HEPG2 cells and in high-fat diet-fed mice. J. Food Sci.. 85. 7. 2216–2226. doi: 10.1111/1750-3841.15166.

H. Lee, H. Li, M. Noh, and J. H. Ryu, 2016. Bavachin from psoralea corylifolia improves insulin-dependent glucose uptake through insulin signaling and AMPK activation in 3T3-L1 adipocytes. Int. J. Mol. Sci.. 17. 4. doi: 10.3390/ijms17040527.

S. He et al., 2014. Discovery of a Potent and Selective DGAT1 Inhibitor with a Piperidinyl-oxy-cyclohexanecarboxylic Acid Moiety. ACS Med. Chem. Lett.. 5. 10. 1082–1087. doi: 10.1021/ml5003426.

J. Liu, Y. Zhao, C. Huang, Y. Li, and F. Guo, 2019. Prenylated flavonoid-standardized extract from seeds of Psoralea corylifolia L. activated fat browning in high-fat diet–induced obese mice. Phyther. Res.. 33. 7. 1851–1864. doi: 10.1002/ptr.6374.

D. Desmawati and D. Sulastri, 2019. Phytoestrogens and Their Health Effect. Maced J Med Sci.. 7. 3. 495–499. doi: 10.3889/oamjms.2019.086.

T. Sözen, L. Öz???k, and N. Ç. Ba?aran, 2017. An overview and management of osteoporosis. Eur J Rheumatol. 4. 1. 46–56. doi: 10.5152/eurjrheum.2016.048.

M. Don, L. Lin, and W. Chiou, 2012. Phytomedicine Neobavaisoflavone stimulates osteogenesis via p38-mediated up-regulation of transcription factors and osteoid genes expression in MC3T3-E1 cells ?.Eur. J. Integr. Med.. 19. 6. 551–561. doi: 10.1016/j.phymed.2012.01.006.

F. J. Zhao, Z. B. Zhang, N. Ma, X. Teng, Z. C. Cai, and M. X. Liu, 2019. Untargeted metabolomics using liquid chromatography coupled with mass spectrometry for rapid discovery of metabolite biomarkers to reveal therapeutic effects of: Psoralea corylifolia seeds against osteoporosis. RSC Adv.. 9. 61. 35429–35442. doi: 10.1039/c9ra07382e.

S. A. Hienz, S. Paliwal, S. Ivanovski, B. Cells, and B. Homeostasis, 2015. Mechanisms of Bone Resorption in Periodontitis. J. Immunol. Res.. 2015. 615486. doi: http://dx.doi.org/10.1155/2015/615486.

Q. Xu, W. Xu, and X. Yang, 2020. Meroterpenoids from the fruits of Psoralea corylifolia. Tetrahedron. 76. 31–32. 131343. doi: 10.1016/j.tet.2020.131343.

Downloads

Published

2022-11-28

How to Cite

Ariantari, N. P., & Ratnasantasyacitta, E. S. P. . (2022). Pharmacologically Active Secondary Metabolites from Psoralea corylifolia. Journal of Tropical Pharmacy and Chemistry, 6(2), 177–189. https://doi.org/10.25026/jtpc.v6i2.431