Molecular Docking Study of Nigella sativa Alkaloid Compounds as the Inhibitor of Papain-Like Protease SARS-CoV-2

Authors

  • Gusnia Meilin Gholam Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia https://orcid.org/0000-0001-7142-5856
  • Iman Akhyar Firdausy Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia

DOI:

https://doi.org/10.25026/jtpc.v7i1.420

Keywords:

SARS-CoV-2, PLpro, Molecular docking, Nigella sativa

Abstract

SARS-CoV-2 causes about 66% of China’s Wuhan market workers to experience fever, dry cough, and fatigue. Black cumin (Nigella sativa) is a plant with many benefits to cure many illnesses like hypertension, headache, infection, and inflammation. This study aimed to investigate the inhibition by compounds belonging to the Alkaloid group from Black Cumin Seed to inhibit PLpro activity as a target for SARS-CoV-2. The study used five alkaloid compounds ((2E,4E)-Decadienal, (2E,4Z)-Decadienal, Nigellicine, Nigellidine, and Nigellimine) from the Black cumin seed and a PLpro SARS-CoV-2 receptor (PDB ID: 6WX4). The methods used are ligand and receptor preparation, grid box validation, molecular docking, 2D and 3D visualisation, and data analysis using Gibbs free energy, type of interaction, and contact of amino acid residues data. This study used YASARA structure and BIOVIA Discovery Studio. The results showed that Nigellidine has the highest Gibbs free energy with a -2.67 kcal/mol score, higher than VIR251. PLpro has a catalytic triad at Cys111, His272, and Asp286 residues, the compound that binds to the active site is Nigellicine found at amino acid Cys111 with Pi-Sulfur.

Downloads

Download data is not yet available.

References

Wu Y, Chen C, Chan Y. 2020. The outbreak of COVID-19: An overview. J. Chinese Med. Assoc.; 83 (3): 217–220.

Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. 2020. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res.; 24: 91–98.

Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM. 2020. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front. Cell. Infect. Microbiol.; 10: 1–17.

World Health Organization, “WHO Coronavirus (COVID-19) Dashboard.” [Online]. Available: https://covid19.who.int/table.

Osipiuk J, et al.. 2021. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun.; 12 (743): 1–9.

Clasman JR, Everett RK, Srinivasan K, Mesecar AD 2020. Decoupling deISGylating and deubiquitinating activities of the MERS virus papain-like protease. Antiviral Res.; 174(104661).

Ahmad A, et al., 2013. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed.; 3(5): 337–352.

Yimer EM, Tuem KB, Karim A, Ur-Rehman N, Anwar F. 2019. Nigella sativa L. (Black Cumin): A Promising Natural Remedy for Wide Range of Illnesses. Evidence-based Complement. Altern. Med.

B. Mulyati and R. S. Panjaitan, “Study of Molecular Docking of Alkaloid Derivative Compounds from Stem Karamunting (Rhodomyrtus tomentosa) Against ?-Glucosidase Enzymes,” Indones. J. Chem. Res., vol. 9, no. 2, pp. 129–136, 2020.

Ma’arif B, Denis, Suryadinata A, Artabah, Laswati H, Agil M. 2019. Metabolite Profiling of 96% Ethanol Extract from Marsilea crenata Presl. Leaves Using UPLC-QToF-MS/MS and Anti-Neuroinflammatory Predicition Activity with Molecular Docking. J. Trop. Pharm. Chem.; 4(6): 261–270.

Zahra H, Ambarsari L, Setyawati I, Gholam GM, Wahyudi ST. 2023. Molecular Dynamics Study of B. subtilis Laccase Against POME Waste Components with Temperature Variations and Adjustment of Active Site Mutations. Biointerface Research in Applied Chemistry; 13(6): 509.

Valmas A, Dedes G, Dimarogona M. 2020. Structural Studies of a Fungal Polyphenol Oxidase with Application to Bioremediation of Contaminated Water. Proceedings; 66: 1–10.

Gao M, Nie K, Qin M, Xu H, Wang F, Liu L. 2021. Molecular mechanism study on stereo?selectivity of ? or ? hydroxysteroid dehydrogenases. Crystals; 11(3): 1–25.

Gholam GM, Artika IM. 2023. Potensi Terbentuk Interaksi Molekuler pada Fitokimia Alami sebagai Inhibitor Sap 2 Candida albicans: Pendekatan In silico. Jurnal Farmasi Udayana; 11(2): 54-62.

Yadav S, Pandey SK, Singh VK, Goel Y, Kumar A, Singh SM. 2017. Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies. PLoS One; 12(5):1–15.

Nusantara PBAZ. 2021. Analisis in silico senyawa bioaktif biji jintan hitam sebagai inhibitor angiotensin-i converting enzyme (ace). IPB University.

M. Weni, M. Safithri, and D. S. H. Seno, “Molecular docking of active compounds piper crocatum on the alpha- glucosidase enzyme as antidiabetic,” Indones. J. Pharm. Sci. Technol., vol. 7, no. 2, pp. 64–72, 2020.

Skrt M, Benedik E, Podlipnik ?, Ulrih NP. 2012. Interactions of different polyphenols with bovine serum albumin using fluorescence quenching and molecular docking. Food Chem. 135(4): 2418–2424.

Shree P, et al.. 2022. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants–Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi)–a molecular docking study. J. Biomol. Struct. Dyn.; 40(1): 190–203.

Shin D et al.. 2020. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature; 587(7835): 657–662.

S. Hadi, K. Anwar, A. Khairunnisa, and N. Komari, “Penambatan Molekul Kandungan Eurycoma longifolia Jack. (Pasak bumi) terhadap Human Phosphodiesterase 5,” J. Pharmascience, vol. 7, no. 2, pp. 36–47, 2020.

Pandey SK, Yadav S, Goel Y, Temre MK, Singh VK, Singh SM. 2019. Molecular docking of anti-inflammatory drug diclofenac with metabolic targets: Potential applications in cancer therapeutics. J. Theor. Biol.; 465:117–125.

Gholam GM, Darmawan NI, Siregar JE, Artika IM. 2023. Selected Polyphenols from Date (Phoenix dactylifera) as Anti-Virulence of Candida albicans Through Multiple Enzyme Targets. Biointerface Research in Applied Chemistry; 13(4): 386.

Krieger E, Vriend G. 2015. New Ways to Boost Molecular Dynamics Simulations. Journal of Computational Chemistry. 36(13): 996-1007.

Gholam GM. 2022. Molecular Dockig of the Bioactive Compound Ocimum sanctum as an Inhibitor of Sap 1 Candida albicans. Sasambo Journal of Pharmacy; 3(1): 18-24.

Gholam GM, Firdausy IA. 2022. Molecular Docking Study of Natural Compounds from Red Betel (Piper crocatum Ruiz & Pav) as Inhibitor of secreted aspartic proteinase 5 (Sap 5) in Candida albicans. Sasambo Journal of Pharmacy; 3(2): 97-104.

Krieger E, Koraimann G, Vriend G. 2002. Increasing the Precision of Comparative Models with YASARA NOVA-a self-parameterizing Force Field. Proteins: Structure, Function, and Bioinformatics; 47(3): 393-402.

Krieger E, Vriend G. 2014. YASARA View-molecular Graphics for All Devices-from Smartphones to Workstations. Bioinformatics; 30(20): 2981-2982.

Gholam GM, Firdausy IA, Artika IM, Abdillah RM, Firmansyah RP. 2022. Molecular Docking: Bioactive Compounds of Mimosa pudica as an Inhibitor of Candida albicans Sap 3. bioRxiv. https://doi.org/10.1101/2022.09.06.506736

Zahra H, Haridas RB, Gholam GM, Setiawan AG. 2022. Anti-ulceritis Activity of Various Herbal Plants and Future Prospects as Cultivated Plants. Jurnal Sains dan Kesehatan; 4(2): 343-353.

Haridas RB, Kurnia MR, Zahra H, Gholam GM. 2021. Varian B.1.1.7 (SARS-CoV-2): Studi Literatur Singkat. Jurnal Kesehatan Indonesia; 12(1): 1-11.

Gholam GM, Luthfia M, Firdausy IA. 2023. Molecular Docking: Bioactive Compounds in Indramayu Mango (Mangifera indica L.) Peel Waste as NS5B Hepatitis C Virus (HCV) Inhibitor. Pharmacy and Pharmaceutical Sciences Journal; 10(1): 1-10.

Gholam GM. 2023. Molecular Docking Analysis of Mangiferin Compound from Mahkota Dewa (Phaleria macrocarpa) against Sap 5 Candida albicans. Jurnal Sains dan Kesehatan; 5(3): 350-357.

Gholam GM. 2022. Minyak Atsiri Kapulaga (Elettaria cardamomum) sebagai Inhibitor Sap 5 Candida albicans penyebab Kandidiasis Vulvovaginalis (KVV) secara In silico. IPB University.

Downloads

Published

2023-06-29

How to Cite

Gholam, G. M., & Firdausy, I. A. (2023). Molecular Docking Study of Nigella sativa Alkaloid Compounds as the Inhibitor of Papain-Like Protease SARS-CoV-2. Journal of Tropical Pharmacy and Chemistry, 7(1), 33–40. https://doi.org/10.25026/jtpc.v7i1.420