In-Silico Screening of Mitragynine Derivates from the Genus Mitragyna Korth Targeting the Main Protease of the SARS-COV-2

Authors

  • Islamudin Ahmad Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, East Kalimantan 75119, Indonesia
  • Nur Masyithah Zamruddin Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, East Kalimantan 75119, Indonesia
  • M. Arifuddin Laboratory of Pharmaceutical Research and Development of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, East Kalimantan 75119, Indonesia
  • Yuspian Nur Laboratory of Pharmaceutical Research and Development of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, East Kalimantan 75119, Indonesia
  • Firzan Nainu Faculty of Pharmacy, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia https://orcid.org/0000-0003-0989-4023

DOI:

https://doi.org/10.25026/jtpc.v7i2.523

Keywords:

Ajmalicine, COVID-19, mitrajavine, mitragynine derivates, molecular docking, SARS-CoV-2

Abstract

Coronavirus Diseases 2019, caused by SARS-CoV-2, has been a significant threat to global public health. Unfortunately, effective COVID-19 vaccines and clinically-proven anti-SARS-CoV-2 drugs remain unavailable. This study was carried out aiming to predict the potential effect of mitragynine derivates from the Genus Mitragyna Korth as an inhibitor of Mpro, the main protease of the SARS-CoV-2, by in silico molecular docking study. The crystal structure of the main protease of SARS-CoV-2 as an active site target was obtained from the PDB database (rcsb.org) with PDB ID: 5R84 and 6LU7 with the native ligand of Z31792168 and N3, respectively. The analysis of in silico molecular docking was conducted using Autodock 4.2.6 (100 docking runs). The central grid was placed on HIS41 and CYS145 with a grid box comprised of 40x30x34 (for protein 5R84) and 36x62x40 (for protein 6LU7) points spaced by 0.375 Å was centered on the active site of X=9,812; Y=-0,257; Z=20,849 and X=-9.732; Y=11.403; X=68,483 (XYZ-coordinates), respectively. Our research indicated that mitrjavine and ajmalicine exhibit greater potential inhibition of the active site on the Mpro of SARS-CoV-2, even stronger than native ligands. We believed that these compounds are promising candidates to be examined in further COVID-19 drug discovery studies.

Downloads

Download data is not yet available.

References

Anonim. WHO Coronovirus Disease (COVID-19) Dashboard [Internet]. World Health Organization. 2020 [cited 2020 May 26]. Available from: https://covid19.who.int/?gclid=CjwKCAjw_LL2BRAkEiwAv2Y3SWqPVzvW6J2zszeR_R_fPXE-HDk_1xH1nq4XqQxFiFN09gO-CYgr6RoChhMQAvD_BwE

Gallagher TM, Buchmeier MJ. Coronavirus Spike Proteins in Viral Entry and Pathogenesis. Virology, 2001; 374: 371–374.

Chan JFW, To KKW, Tse H, Jin DY, Yuen KY. Interspecies transmission and emergence of novel viruses: Lessons from bats and birds. Trends Microbiol., 2013; 21(10): 544–555.

Chan JF, Kok K, Zhu Z, Chu H, Kai-wang K, Yuan S, Yuen K. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect., 2020; 9: 221–236.

Benvenuto D, Giovanetti M, Ciccozzi A, Spoto S, Angeletti S, Ciccozzi M. The 2019-new coronavirus epidemic: Evidence for virus evolution. J Med Virol., 2020; 92(4): 455–459.

Rota PW, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, et al. Characterization of a novel coronavirus associated with severe acute respiraotry syndrome. Science. 2003; 300: 1953–1966.

Gao J, Zhang L, Liu X, Li F, Ma R, Zhu Z, Zhang J, Wu J, Shi Y, Pan Y, Ge Y, Ruan K. Repurposing low-molecular-weight drugs against the main protease of SARS-CoV-2. bioRxiv. 2020; preprint

Jan Bosch B, van der Zee R, de Haan CAM, Rottier PJM. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J Virol., 2003; 77(16): 8801–8811.

Md Fulbabu S, Rajarshi R, Nisha Amarnath J, Sayan P, Parimal K. Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. J Biomol Struct Dyn., 2020; 1–30.

Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, Farid R, Lin T, Mobley DL, Jorgensen WL, Berne BJ, Friesner RA, Abel R. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc., 2015; 137(7): 2695–2703.

Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Gudat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. bioRxiv., 2020; 2020.02.26.964882.

Haider Z, Subhani MM, Farooq MA, Ishaq M, Khalid M, Khan RSA, Niazi AK. In silico discovery of novel inhibitors against main protease (Mpro) of SARS-CoV-2 using pharmacophore and molecular docking based virtual screening from ZINC database. Preprints. 2020; (March).

Zhavoronkov A, Zhebrak A, Zagribelnyy B, Terentiev V, Bezrukov DS, Polykovskiy D, Shayakhmetov R, Filimonov A, Orekhov P, Yan Y., Popova O, Vanhaelen Q, Aliper A, Ivanenkov Y. Potential 2019-nCoV 3C-like protease inhibitors designed using generative deep learning approaches potential COVID-19 3C-like protease inhibitors designed using generative deep learning approaches. chemrxiv., 2020; 307(2): E1.

Mirza MU, Froeyen M. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J Pharm Anal. 2020 ; in press.

Liu S, Zheng Q, Wang Z. Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus. Bioinformatics. 2020; btaa224: 1–4.

Colson P, Rolain JM, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents., 2020; 55(3): 105923.

Senathilake KS, Samarakoon SR, Tennekoon KH. Virtual screening of inhibitors against spike glycoprotein of SARS-CoV2: a drug repurposing approach. Preprints, 2020; (March).

Wang Q, Zhao Y, Chen X, Hong A. Virtual screening of approved clinic drugs with main protease (3CLpro) reveals potential inhibitory effects on SARS-CoV-2. Preprints. 2020; (March).

Chen H, Du Q. Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. Preprints. 2020; 2(March).

Serseg T, Benarous K, Yousfi M. Hispidin and Lepidine E?: Two natural compounds and folic acid as potential inhibitors of 2019-novel coronavirus main protease (2019- nCoVM pro), molecular docking and SAR study. arXiv, 2020; 2004.08920.

Utomo RY, Ikawati M, Meiyanto E. Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection. Preprints. 2020;2(March):1–8.

Rao P, Shukla A, Parmar P, Goswami D. Proposing a fungal metabolite-Flaviolin as a potential inhibitor of 3CLpro of novel coronavirus SARS-CoV2 using docking and molecular dynamics. arXiv. 2020; 2004.03806.

Zhang MZ, Chen Q, Yang GF. A review on recent developments of indole-containing antiviral agents. Eur J Med Chem. 2015; 89: 421–441.

Brown PN, Lund JA, Murch SJ. A botanical, phytochemical and ethnomedicinal review of the genus Mitragyna korth: Implications for products sold as kratom. J Ethnopharmacol. 2017; 202: 302–325.

Shaik Mossadeq WM, Sulaiman MR, Tengku Mohamad TA, Chiong HS, Zakaria ZA, Jabit ML, Baharuldin MTH, Israf DA. Anti-inflammatory and antinociceptive effects of Mitragyna speciosa Korth methanolic extract. Med Princ Pract. 2009; 18(5): 378–384.

Sabetghadam A, Ramanathan S, Sasidharan S, Mansor SM. Subchronic exposure to mitragynine, the principal alkaloid of Mitragyna speciosa, in rats. J Ethnopharmacol. 2013; 146(3): 815–823.

Mohd Moklas MA, Suliman NA, Mat Taib CN, Baharuldin MTH. Sedative, cognitive impairment and anxiolytic effects of acute Mitragyna speciosa in rodents. J US-China Med Sci. 2013; 10(1): 37–44.

Parthasarathy S, Azizi JB, Ramanathan S, Ismail S, Sasidharan S, Mohd MI, et al. Evaluation of antioxidant and antibacterial activities of aqueous, methanolic and alkaloid extracts from Mitragyna speciosa (rubiaceae family) leaves. Molecules, 2009; 14(10): 3964–3974.

Boyle NMO, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel?: An open chemical toolbox. J Cheminform., 2011; 3(33): 1–14.

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Oslon AJ. AutoDock4 and AutodockTools4: Automated docking with selectivity receptor flexibility. J Comput Chem. 2009; 30(16): 2785–2791.

BIOVA DS. Discovery Studio Visualizer. San Diego, USA; 2020.

Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng M, Chen L, Li H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B., 2020; 10(5): 766-788

Anonim. Ajmalicine [Internet]. National Library of Medicine. 2020 [cited 2020 May 30]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ajmalicine

Ramanathan S, Parthasarathy S, Murugaiyah V, Magosso E, Tan SC, Mansor SM. Understanding the physicochemical properties of mitragynine, a principal alkaloid of Mitragyna speciosa, for preclinical evaluation. Molecules, 2015; 20(3): 4915–4927.

Kumarnsit E, Keawpradub N, Nuankaew W. Acute and long-term effects of alkaloid extract of Mitragyna speciosa on food and water intake and body weight in rats. Fitoterapia, 2006; 77(5): 339–345.

Tran T Van. Study on acute and subacute toxicity of ajmalicin extracted from root of Catharanthus roseus G. Don. Pharm J. 1999; 282(10): 14–17.

Das MC, Reddy M, Prabodh S, Sunethri P. Evaluation of acute oral toxicity of ethanol leaves extract of Catharanthus roseus in wistar albino rats. J Clin Diagnostic Res., 2017; 11(3): 12–15.

Kevin LYW, Hussin AH, Zhari I, Chin JH. Sub-acute oral toxicity study of methanol leaves extract of Catharanthus roseus in rats. J Acute Dis., 2012; 2012: 38–41.

Roy S, Chatterjee P. A non-toxic antifungal compound from the leaves of Catharanthus roseus characterized as 5-hydroxy flavone by UV spectroscopic analysis and evaluation of its antifungal property by agar-cup method. Ind Crop Prod., 2010; 32(3): 375–380.

Downloads

Published

2023-12-31

How to Cite

Ahmad, I., Zamruddin, N. M., Arifuddin, M., Nur, Y., & Nainu, F. (2023). In-Silico Screening of Mitragynine Derivates from the Genus Mitragyna Korth Targeting the Main Protease of the SARS-COV-2. Journal of Tropical Pharmacy and Chemistry, 7(2), 78–89. https://doi.org/10.25026/jtpc.v7i2.523

Most read articles by the same author(s)